

Overview

Agenda:

- OCO-3 Mission Architecture
- OCO-3 Observation & Science Modes
- OCO-3 Science Overview
- OCO-3 V&V Program Goals & Scope
- OCO-3 Verification Approach
- OCO-3 Requirement Tree
- OCO-3 System/Subsystem Project Level V&V Flow
- ISS Verification Process
- Merging OCO-3 V&V with ISS V&V
- OCO-3 ISS Verification Summary
- OCO-3 Next steps

OCO-3 Mission Architecture

OCO-3 Observation and Science Modes

Nadir/Glint Observations:

- Nominal science measurements
- Nadir over land, glint over ocean during daylight → more data collected than OCO-2

Target/ Area map Observations:

- Validation over ground based FTS sites, field campaigns, other targets
- Snapshot map variant for area mapping

Calibration Measurements:

- Dark and calibrator measurements for radiometric calibration
- Lunar calibration goal for geometric calibration

Calibration System

Lunar view from ISS

OCO-3 Science Overview

Unique Science Opportunities with OCO-3

Terrestrial Carbon Cycle

Process studies enabled by measurements at all sunlit hours, including SIF. ISS will contain complementary instrumentation.

Anthropogenic Emissions

Enabled by enhanced target mode using pointing mirror assembly

OCO-3 V&V Program Goals & Scope

Goals:

- To verify that the OCO-3 instrument meets performance requirements and validate the mission implementation approach
- To verify that OCO-3 will survive and operate through the expected environments from launch through end of mission life
- Provide the Project, Partners (ISSP and JAXA), and Launch Service Provider (SpaceX) with confidence in the flight interfaces by verifying interface requirements specified in ICDs signed with each organization

Scope:

- The V&V program includes L2 Project System through L4 subsystem requirement modules
- While it is common for projects to have a separate MOS V&V program, OCO-3's V&V program encompasses all payload, interface, and MOS requirement modules

OCO-3 Verification Approach

Verification matrix captured in DOORS

- For each requirement, matrix now identifies:
 - Rationale & detailed verification comments
 - Verification approach
 - Verification Status
 - Any related ECRs or Waivers
 - Link to verification reports and/or short descriptions of methods of verification
 - Provides the evidence or summary of how requirement was closed
- ❖Requirement verification is reviewed during every test but final verification of the requirement is determined by the final test, TVAC-2.

❖Augmented version of OCO-2 V&V

- Improvements include:
 - No non-JPL modules
 - Simplified report generation
 - Leverage the vast amount of existing procedures that exists as well as the experiences of the people who participated in the V&V of OCO & OCO-2

OCO-3 Requirement Tree

OCO-3 System/Subsystem Project Level V&V Flow

- The V&V Process Includes
 - Verification Activities
 - Project V&V Engineer is responsible for supporting the PSE in closure of all L1 & L2 requirements
 - Individual Level 3 and Level 4 elements before Payload Bus Integration, (L4 PB, Instrument, SDOS, etc)
 - Ground System Verification (MOS, SDOS, L2)
 - Science Verification (Alg, Cal, Val)
 - Validation Activities
 - Component Validation
 - Mission Scenario Tests (MST)
 - ORT/Rehearsals 3 Planned
 - EEIS Testing (Combination of RF Compatibility and Data Flow Testing)

ISS Verification Process

Slide 10

Merging OCO-3 V&V with ISS V&V

ISS Requirement Idiosyncrasies

external entity.

OCO-3 Workarounds

- The process for negotiation of a
 - To treat these requirements as level 2 requirements but to treat the verification

of these requirements as a separate

requirements in the JPL system as

change in these requirements is longer than that of a typical project held requirement.

The verification approach and

methods are predefined by the

process. 2 To have the official audit of these requirements be done by the expert ISS engineer, but to close the

- closed prior to delivery to I&T.
- soon as the requirement was considered verified by the OCO-3 ISS engineer. And, the process for accepting the 3. To ensure that ISS/JAXA/SpaceX closure of these requirements is requirements for each subsystem are called out specifically by the ISS

program and not negotiable.

OCO-3 ISS Verification Summary

- Lessons learned from OPALS
 - ISS constantly changes requirements in the form of "PIRNS" (their version of ECRs)
 - All requirement verifications are tracked by ISS system (VERITAS)
 - PIRNS are not captured in VERITAS and the ICD is not rev'd when changes occur → no way to track these changes
 - OCO-3 took the approach of capturing all requirements in 1 DOORS module which can easily attach applicable PIRNS and update object text and/or verification as needed so it's always up to date
- ISSP did take into account lessons learned from OPALS and other payloads and remodeled their entire ISS payload structure and updated their documents (called RISE)
 - Since this new RISE effort, very few PIRNS have been release against OCO-3
 - Total # of requirements was reduced
 - Requirements were re-written to be more clear based on lessons learned
 - VERITAS updates and tracking of requirement changes is still lagging/slow
- Future PDs should follow a similar approach and track all ISSP and LV in DOORS

OCO-3 Next steps

- OCO-3 is about to start Thermal Vacuum Testing
- Then we will put the OCO-3 payload into a planned storage
- We will continue with validation testing until Launch
- Launch Date is currently set for Feb 1st 2019 on SpaceX 17